NCLU Testing



Why do we test?

e \Verify: we don’t break things, new features

e Dev cycle
o *should* increase productivity: give developer quick feedback and identify errors earlier in the
product development life cycle
e Design/de-coupled code

o Example: separate implementation details of components so parts can be mocked without
affecting test value

o Example: functions/classes should have reduced scope which is tested individually
o Counter:

m Do not allow testing to drive design: have balance
e Documentation
o The tests are using your code, how does it look to be a user of your code?
e Value of tests affected by
o bug prevention, dev cycle time, speed, complexity, predictability



Integration tests

Before we merge dev-next -> dev, full nclu-smoke tests *should* be run

Full test run can take 6-10 hrs

Failures need to be inspected one-by-one

TRDB: tests run according to different schedules: often you’ll look up results
for a test and it'll only have been run once in the last 10 days. So it doesn’t
help much at all.

e Sometimes tests lack granularity and proper reporting--can be difficult to
understand where the failure is.



Current NCLU dev cycle

e ‘“dev-next” branch
e Run integration tests

e Success!
o Merge to “dev”
e Failure :(

o Diagnose, re-run, fix, hope things are still okay



Current bug fix cycle

Issue assigned

Reproduce on switch

Modify capturing.py

Put pdb somewhere

Stop netd

Start netd in foreground

Modify NCLU python files with fix

o Either directly or by dev local, building deb and installing new deb
No integration test to verify fix
No unit testing in dev cycle



“Unit” testing

e Less about “unit” testing
o As you'll notice, a lot of the “unit” tests actually feel like mocked integration tests
o Coverage with implementation tested is more important than “unit” testing

e More about testing the code directly
e |Instead of needing to run integration tests



Unit test dev cycle(proposal)

Use branches for bugs and features

Have 95%+ unit test coverage

Run unit tests on every branch every time a commit is made
If tests pass and code is approved, merge to dev-next

If nightly dev-next tests pass, merge to dev automatically
(debate on if dev-next is necessary)



Unit test bug fix cycle(proposal)

Issue assigned

Reproduce on switch

Reproduce with test failure

Fix, test passes now, yay!

Test on switch and verify fix

(Still no integration test to verify fix)

Results:

Faster development time

|dentify regressions earlier

Bootstrapping errors are identified immediately
Runtime errors can also often be identified

o O O O



Current NCLU unit test compromises

e System dependencies
o File system
o Commands
e Import time side-effects
o Makes patching very difficult
o Imports need to be in test methods to defer import time side-effects to be after patches are
done

e Python 2.7 base unit test package
e No setuptools



Unit test patches

e Patches
o all file operations
o all system commands
o frr-reload
o apt
e One global patch object

e setUp/tearDown on the global patch object for each test



Unit testing NCLU

e nclu.tests.base.BaseTest: patcher setUp/tearDown
e self.patcher.expect_command
e self.patcher.expect file



Test runner

(/home/nathan/test-runner): Should | move it to a repo somewhere?
Run tests against tags and branches

Updates hard node

Build nclu deb

Install deb

Test reporting/coverage

Fabric file



Improvements

e Make patcher work as context manager

e Patcher should cause test failures if expected commands *not* run(we do this
in the experimental branch for example)

e Stacked patched file system

o Layer groups of file configurations
o Be able to quickly revert back to previous states in stack
e Testrunner could send email alerts on:

o New failures
o Fabfile errors when trying to run



Bonus: dev cycle with VM

e If running tests, you can not develop against hard node
e Virtual machine is nice in-between
e Sync current dev nclu to VM switch automatically

rsync --update -v -r -e ssh nclu/nclu/ -e "ssh -p 22222"
cumulus@localhost:/usr/lib/python2.7/dist-packages/nclu/

while inotifywait -r nclu/nclu*; do

rsync --update -v -r -e ssh nclu/nclu/ -e "ssh -p 22222"
cumulus@localhost:/usr/lib/python2.7/dist-packages/nclu/

done



