
NCLU Testing

Why do we test?
● Verify: we don’t break things, new features
● Dev cycle

○ *should* increase productivity: give developer quick feedback and identify errors earlier in the
product development life cycle

● Design/de-coupled code
○ Example: separate implementation details of components so parts can be mocked without

affecting test value
○ Example: functions/classes should have reduced scope which is tested individually
○ Counter:

■ Do not allow testing to drive design: have balance

● Documentation
○ The tests are using your code, how does it look to be a user of your code?

● Value of tests affected by
○ bug prevention, dev cycle time, speed, complexity, predictability

Integration tests
● Before we merge dev-next -> dev, full nclu-smoke tests *should* be run
● Full test run can take 6-10 hrs
● Failures need to be inspected one-by-one
● TRDB: tests run according to different schedules: often you’ll look up results

for a test and it’ll only have been run once in the last 10 days. So it doesn’t
help much at all.

● Sometimes tests lack granularity and proper reporting--can be difficult to
understand where the failure is.

Current NCLU dev cycle
● “dev-next” branch
● Run integration tests
● Success!

○ Merge to “dev”

● Failure :(
○ Diagnose, re-run, fix, hope things are still okay

Current bug fix cycle
● Issue assigned
● Reproduce on switch
● Modify capturing.py
● Put pdb somewhere
● Stop netd
● Start netd in foreground
● Modify NCLU python files with fix

○ Either directly or by dev local, building deb and installing new deb

● No integration test to verify fix
● No unit testing in dev cycle

“Unit” testing
● Less about “unit” testing

○ As you’ll notice, a lot of the “unit” tests actually feel like mocked integration tests
○ Coverage with implementation tested is more important than “unit” testing

● More about testing the code directly
● Instead of needing to run integration tests

Unit test dev cycle(proposal)
● Use branches for bugs and features
● Have 95%+ unit test coverage
● Run unit tests on every branch every time a commit is made
● If tests pass and code is approved, merge to dev-next
● If nightly dev-next tests pass, merge to dev automatically
● (debate on if dev-next is necessary)

● Issue assigned
● Reproduce on switch
● Reproduce with test failure
● Fix, test passes now, yay!
● Test on switch and verify fix
● (Still no integration test to verify fix)
● Results:

○ Faster development time
○ Identify regressions earlier
○ Bootstrapping errors are identified immediately
○ Runtime errors can also often be identified

Unit test bug fix cycle(proposal)

Current NCLU unit test compromises
● System dependencies

○ File system
○ Commands

● Import time side-effects
○ Makes patching very difficult
○ Imports need to be in test methods to defer import time side-effects to be after patches are

done

● Python 2.7 base unit test package
● No setuptools

Unit test patches
● Patches

○ all file operations
○ all system commands
○ frr-reload
○ apt

● One global patch object
● setUp/tearDown on the global patch object for each test

Unit testing NCLU
● nclu.tests.base.BaseTest: patcher setUp/tearDown
● self.patcher.expect_command
● self.patcher.expect_file

Test runner
● (/home/nathan/test-runner): Should I move it to a repo somewhere?
● Run tests against tags and branches
● Updates hard node
● Build nclu deb
● Install deb
● Test reporting/coverage
● Fabric file

Improvements
● Make patcher work as context manager
● Patcher should cause test failures if expected commands *not* run(we do this

in the experimental branch for example)
● Stacked patched file system

○ Layer groups of file configurations
○ Be able to quickly revert back to previous states in stack

● Test runner could send email alerts on:
○ New failures
○ Fabfile errors when trying to run

Bonus: dev cycle with VM
● If running tests, you can not develop against hard node
● Virtual machine is nice in-between
● Sync current dev nclu to VM switch automatically

rsync --update -v -r -e ssh nclu/nclu/ -e "ssh -p 22222"
cumulus@localhost:/usr/lib/python2.7/dist-packages/nclu/

while inotifywait -r nclu/nclu*; do

rsync --update -v -r -e ssh nclu/nclu/ -e "ssh -p 22222"
cumulus@localhost:/usr/lib/python2.7/dist-packages/nclu/

done

